"Many scientists and engineers spend much of their lives writing, debugging, and maintaining software, but only a handful have ever been taught how to do this effectively: after a couple of introductory courses, they are left to rediscover (or reinvent) the rest of programming on their own. The result? Most spend far too much time wrestling with software, instead of doing research, but have no idea how reliable or efficient their programs are." —Greg Wilson [1]

Suggested Best Practices

To achieve success in scientific software projects, we propose a minimal set of guidelines for pragmatic practitioners, peer reviewers, and project leaders of small- (single-lab) to medium- (collaborative, noncommercial projects) sized projects. We debated, solicited advice, reread some of our favorite books [8,9], and took guidance from our editors, to boil down our experiences and this enormous topic to five recommended, stripped-down practices for successful scientific software development: 1) design the project up-front; 2) document programs and key processes; 3) apply quality control; 4) use data standards where possible; and 5) incorporate project management. We can trace project
failures back to breakdowns in any one or more of these
practices. We will next explain what we mean by each practice.

Design the project up-front. Good scientists do not perform
experiments before developing a hypothesis, then describing
materials and methods to test that hypothesis. Similarly,
before the first line of code is written, software projects
should be proactively and thoughtfully designed. This does
not necessarily require a voluminous tome, but it should
answer two key questions: “What will the program(s) do?” and
“How will the results produced by the program be verified?”
The most simple design documents describe inputs, how those
inputs will be transformed by the program(s), and outputs.

Based on the purpose of the software, identifying the
appropriate technologies or programming languages is a vital
decision during the design phase. While typically driven,
often mistakenly, by the current in-house expertise of the
software developers, there should be careful analysis in
addressing the problem with the most practical selection of
technologies. For example, if ease of distribution is
considered important, the platform-independent nature of
Java may make the most sense; if the software deals with
a great deal of text manipulation, Perl may be best suited; if
speed of execution is essential, C or C++ may be the way
to go. In addition to considering the built-in strengths of a
particular language, most offer a vast array of canned
libraries (whether included in the distribution or preexisting
as an open source project) developed to handle all but the
most arcane technological issues. It is at this design juncture
that much time can be saved in building software components
that could be acquired for almost nothing through relatively
minimal research. Additionally, plugging in trusted, reusable
code bases lends credibility to the overall quality of the
software and streamlines the testing phase.

The team should develop test plans and create data to test
their code. In the development of test plans, it is also good
practice to consider independent variables, such as how long
the program might take to run on a certain platform, how it
will work with a real-world-sized input file, or how well it will
interact or interoperate with other programs that are not a
part of your project.

The design phase should also address software usability
requirements. If the software under development will be used
only by the programmer, usability might not be a large
concern. However, as funding agencies emphasize
dissemination, collaborative teams aim to share tools; and to
use statistics to help justify renewal of funding, usability
should be a higher priority in scientific software
development. Designing facile user interfaces, interactive
feedback cycles, maintenance and release plans, or easy reuse
of code or tools requires careful thought, due diligence, and
resourcing up-front.

Typically, the proposal writing or management approval
process provides a mechanism to force project design. Before
coding begins, projects can discover existing tools and data
standards and articulate the planned functionality and testing
of the software. No matter the scale of the software project, it
is important to incorporate feedback from key stakeholders
(thesis advisor, external advisory committee, etc.) in this
process to ensure that the design meets expectations.

Document programs and key processes. One of the
foundations of scientific research is the lab notebook, where
materials, methods, and results are recorded so that
experiments can be repeated. Similarly, all computer
programs and code bases should be well-documented,
modular, and easy to read and follow even by users who did
not write the program. Modularity can be a complex issue,
but at a basic level it refers to coding in a way so that the
overall task being performed is divided into small, discrete
units of work. This design paradigm promotes reusability and
flexibility [10]. A modest level of documentation might
provide help through a user-guide, information on how to
compile and execute a program, and in-line comments
describing program functions and modules.

Use a quality control process. One cornerstone of good
science is reproducibility of results. Similarly, being able to
consistently reproduce the results of a computer program is
the yardstick used to measure the validity of that program.
Reproducibility requires three things: ensuring a program
works the way it should (testing), knowing exactly what was
used to produce the results (version control), and recognizing
and tracking program bugs.

Programs should be thoroughly tested according to the test
plans developed in the design phase. Well-designed unit tests
may be used to address whether a particular module of code is
working properly and allows testing to proceed piecemeal
and iteratively throughout the development process. This
enables bugs to be identified and handled early so as to avoid
major problems during integration and final testing.

Undeniably, computational biology projects are fluid: there
are always newer, better data files and standards available,
requiring continual updates to the code base. Consequently,
it is critical to track exactly which version of software and
which set of input files and parameters were used to produce
a specific set of results. This is especially important six
months later, when the original programmer has moved on to
another project. Developers should use version control for
both data and source code, tying results to specific versions.
Subversion [11] and CVS [12,13] are open source version
control systems freely available. Finally, confessing to and
tracking known bugs should be encouraged since bugs are to

Beyond application of functional testing, quality can be addressed further through performance optimization using bounds checkers (e.g., Valgrind provides basic debugging capabilities plus detailed profiling of memory use). These issues are typically overlooked during software development as problems with memory leaks and poor memory management hide behind software functionality and may long go unnoticed.

Apply data standards where possible. Disseminating to and sharing results with the broader research community is critical and often provides the basis for new scientific progress. The same is true for computer programs. The inputs, outputs, and “results” of computer programs are often data files. Whether included as supplementary materials for a manuscript or as subtitles in an enterprise level relational database, scientific data should be supplied in accepted, standard formats wherever possible. Admittedly, biology is a fast-moving target. However, the increasing need to share, compare, and integrate data and tools is driving communitywide initiatives to standardize biological data formats [16,17]. As one example, the MGED Society has defined minimal sets of parameters to describe gene expression array datasets (MIAME), along with a data standard (MAGE) [18]. As a result of their lead and other work, shared repositories for microarray results are now available and evolving [19,20], and journals are increasingly requiring supplemental data deposition at them [21]. Software developers should research the availability of community-accepted data standards as inputs and outputs for their programs. Even if suitable data standards are not available, it is important to include documentation (metadata) describing the data. Metadata should explain the format (syntax) of the data as well as definitions and assumptions that allow the data to be interpreted or used in the proper context (semantics). Data standards ensure the ability to scale and integrate code bases, enable accurate and efficient code development, and reduce user and peer reviewer frustration.

Incorporate project management. In scientific research, principal investigators ensure that experiments are performed according to defined procedures, while making progress in the context of a schedule and a budget. For software development projects, a project manager performs a similar function. Principal investigators who are not themselves software engineers may find themselves filling a project manager role because they supervise people in their labs who write software. Project management for a modest algorithm-development project involving one or two programmers might involve informal design and code reviews, regular meetings to track progress against an established timeline, and review (and sign-off) of testing results. Larger, collaborative projects, however, can become hopelessly chaotic without more disciplined project management. A commonly used approach to managing larger projects is to break them into manageable subprojects, with a series of release cycles interleaved with user or stakeholder feedback. A simple project website, wiki, or more sophisticated solutions such as Xplanner [22] and Basecamp [23], can be used to facilitate team communication, share project plans and documentation, and transparently manage development projects. In our opinion, the Scrum software development methodology [24] offers a practical way to iteratively manage medium-sized software projects.

Examples of Successful Projects That Employ Best Practices

Outside our own anecdotal experiences, we think there is growing evidence that software best practices can effectively meet real-life, scientific needs. We can point to heavyweight projects, such as the cancer Biomedical Informatics Grid (caBIG) [25], and to more modest, lightweight activities such as the Bioconductor project [26]. Specifically, the Bioconductor project has adopted practical techniques that are instructive for small software projects [26]. The Bioconductor project develops statistical software packages ubiquitously employed in biomedical research. This group recognized that reproducing computational research reported in the literature is usually hampered by poorly documented software packages. While scientific manuscripts now typically point to supplementary materials (usually data and computer programs) on the Internet, access to them is not always enough to replicate the research reported. This opensource project adopted the concept of a “vignette,” which is a detailed and interactive document providing a textual description of software functionality [27]. This form of documentation, long regarded as a software best practice, has engendered quite a cult following in the scientific community. In this case, the ultimate goal of reproducible research has exposed software best practices as an enabler and not as a burdensome side effect.

Reading back over this article, we recognize that there are many “shoulds” in our guidelines. In our defense, we write from our collective, heartbreaking experiences watching wheels reinvented, finding dead or unusable programs, and, worse, inheriting rancid and labyrinthine code bases. We are of the opinion that community adherence to the guidelines described here will increase the impact and usability of computational biology work, without placing undue burden on the creators of rapidly evolving, scientific code bases.

Acknowledgments

Author contributions. SMB and SJR conceived and designed the experiments. SWD and JSF analyzed the data. SWD and JSF contributed reagents/materials/analysis tools. SMB, SWD, JSF, and SJR wrote the paper.

Funding. The authors received no specific funding for this article.

Competing interests. The authors have declared that no competing interests exist.

References